1034 N, N, Rogacheva

The author is grateful to A, L, Gol'denveizer for valuable comments and critical re~

marks.

1,

REFERENCES

Gol'denveizer, A, L, , On two-dimensional equations of the general linear
theory of thin elastic shells, In: Problems of Hydrodynamics and the Mecha-
nics of a Continuous Medium, Moscow, " Nauka", 1969,

Gol'denveizer, A, L., Theory of Elastic Thin Shells, (English translation) ,
Pergamon Press, Book N2 09561, 1961,

Gol'denveizer, A, L, , Temperature stresses in thin shells, Trudy TsAGI,

N2 618, 1947,

Pidstrigach,Ia,S. and larema, S, Ia,, Temperature Stresses in Shells,
UkrSSR Akad, Nauk, Kiev, 1961,

Timoshenko, S, P, and Woinowski-Krieger, S, , Plates and Shells.
Moscow, "Nauka", 1966,

Rogacheva, N, N, , Refined theory of thermoelastic shells, Tr. of the Tenth
All-Union Conference on the Theorv of Shells and Plates, Kutaisi, 1975, Vol, 1,
"Metsnieréba” , Tbilisi, 1945,

Antropova,N,N, and Gol'denveizer, A, L, , Errors in constructing the
principal state of stress and the simple edge effect in shell theory. Izv, Akad,
Nauk SSSR, Mekhan, Tverd. Tela, N2 5, 1971,

Translated by M, D, F,

JDC 589.3

ASYMPTOTIC DETERMINATION OF THE FORMATION PROCESS OF NONLINEAR
DISTORTION OF ONE=DIMENSIONAL PULSES IN A LAYERED MEDIUM

PMM Vol, 40, N¢ 6, 1976, pp.1093-1103
U, K, NIGUL
(Tallin)
(Received November 11, 1975)

Nonlinear effects in the propagation, reflection, and refraction of one-dimen-~
sional pulses in a medium consisting of two layers lying on a half-space are con-
sidered and analyzed. Properties of layers and of the half-space are different,
and stresses are defined by an expansion in powers of strains, The initial pulse
of finite duration is specified in the form of boundary condition at the surface
of the external layer either for the deformation or for the dislocation rate, and
the problem of wave pattern when the initial pulse amplitude tends to zero, i.e.
in the case of small nonlinear effects, is solved.

Problem is solved by the method of successive integration of nonhomogene~
ous linear wave equations, in which the solution of the linear problem is taken
as the first approximation and the subsequent approximations are derivedby ap-
proximating the nonlinear terms with the use of the preceding approximation.

The derived first approximation formulas make possible to solve the inverse problem
of acoustic determination of the properties of a medium by the parameters of reflected
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pulses, It follows from these that the measurement of parameters, which define the re-
flected pulses reaching the first layer within the accuracy of basic components of the
nonlinear distortion, widens the information
koo ... 7  onthe properties of layers in comparison
SR coosootAico with the disregard of nonlinear effects (al-

Lg A 77 : e though the number of constants that deter
M
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mine the properties of medium is increased).
Fig, 1

1, Statement of the problem,
Let us consider one-dimensional wave pro-
cesses that depend on time ¢ and the La-
grangian coordinate X with the dot and the
prime denoting derivatives with respect to
t-and X, respectively. Let the finite inter-
vals 0 <X < La, Ls < XK Lp and the semiinfinite interval X > Lp be filled
by different media A, £ and C,respectively (see Fig, 1). Longitudinal dislocationsin
these intervals are denoted by Uja (X, t), Up (X, ¢) and U, (X, {), longitudinal
stresses by 0434 (X, t), 0338 (X, ) and Oy5¢ (X, #), and densities in the initial state
by pa, pp and pc ,respectively, Wave processes inthe A, B and.C media are, re-
spectively, defined by the following equations:

loy (X, )1 = p,Uy" (X, 1), j=4,B,C (1. 1)
o (X, ) =0Q; (Uy), j=A.B,C (1.2
Qy (Uy) = Py + By Uy + Yy by (U2 4 Y5 4 (U + - - ]

where Pg, Py ﬁj, k; and lj are constant coefficients,
We introduce the definitions

’ 1 dQ vy . Ys
60 = LT o [5]" sane aw
7 J

From (1. 1) with the use of (1. 2) and (1. 3) we obtain equations
Cj—zUj" (X, t) — q; (Uj’) Uj” (X, t) = 0, j=A4, B, C (1.4)
g (U) =1+ kU + LU+ .. (1.5)

and stipulate the following conditions,
1) Initial zero conditions

U;X,0 =0, U;(X,0=0, j=4,B,C (1. 6)
2) One of the following two boundary conditions are specified along boundary
X=0 Us' (0, t) = e () [H (1) — H (t — t,)] (problem 1) (L7
Ui 0, t) = — ep (t) [H (t) — H (t — t)l ca (problem 2) (1.8)
where H () is the Heaviside function, and t, and & are constants that satisfy conditions
0L ty<<eaLay gt (Lp—La); 8|

and v (t) is an arbitrary continuous function which satisfies conditions
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Y(O) =P(t) =0, $°(0)=19"(t)=0
max [P ()| =1, 0<Tt<¢

and has in the interval O < t < t, continuous derivatives of all orders required in the
subsequent analysis,

3) Displacements and longitudinal stresses must be compatible at the interfaces of
X = L and X = Lp of adjoining media, which with allowance for (1. 2) yields the
contact conditions

Ua(La, t) = Us (La, 1) (1.9)
Ba {Us" (Lay t) + Yy ka (U4 (Lay D+ ...} =

Be {Up' (La, t) + Yo ks (U’ (La, P + ...}
Us (Lp, 1) = Uc (Lg, 1) (1.10)
Bs {Up’ (Ls, t) + Yy kg [Up'(Lp, )1* + ...} =

Be {Uc' (Ls, 8) + Yy ke (U (Lp, D 4 ...}

4) For problems 1 and 2 in which the (wave) processes are defined by (1.7) and(1.8),
respectively, it is necessary to derive a solution that is asymptotic when & — 0 and de-
termines the small deviation of the nonlinear solution from the linear one which is ob-
tained by expanding functions Q; (U,’) (f = 4, B and C) to within quadratic terms,

The sought solutions of Eqgs. (1.4) which must satisfy the above conditions, represent the
totality of pulses (see Fig. 2). The U zq)

i is generated by the process at the edge
X =0, pulses Ua@ and Upq) arise

..... as the result of reflection-refraction
N Uaqy at the interface X = La of
media A and B, pulses Upwe) and
Ucqy are the result of reflection-re-
fraction Up(yy at the interface X =
Lp of media B and C andsoon.
We restrict the analysis to the pulses
shown in Fig, 2.

We derive the solutions of problems
1 and 2 by the method of successive in-
tegration of linear nonhomogeneous
wave equations {1 — 3]. The essence
of that method consists of constructing
t A B ¢ zero approximations Uamey  Uawmos
T - Up@yer- - - of the considered pulses
L X as solutions of the related linear prob-

g lem, The subsequent approximations

UA(l)j, UA(-z)jv UB(1)5,- .. (] == 1,
Fig. 2 2, 3,...) of the same pulses are de~-
rived by approximating the nonlinear
terms in Eqs. (1.4) , and also in the second contact conditions (1, 9) and (1. 10), using
previous approximations, The calculations for the first approximation are presented

TSN
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below, To derive the latter it is necessary to determine the zero approximation, which
is the same for both problems, Elementary reasoning will show that it can be represen-
ted in the form tij
Uson (X, 1) = (—1)} &35 [H (t) — H (1 — )] § $(2)dz+ (110
to 0
(—)euH (ty— )\ () d5; j=4,B.C; i=1,23
o
tyAB

UsBa(X, t) = eyap [H (t,a8) — H (tyas — to)] S Y(z)dz + (1.12)
te

0

148 .H (tiap — t,) S V(z)dz
0

In these formulas which relate to pulses shown in Fig. 2, the following notationisused:

814 = €Ca, 94 = £Cata, &p =eca (1 — J4) (1.13)
ep =84 (1 — Ja) Jp, &p = — eca (1 — J4) JaJs
o == €04 (1 _ JA) (1 — JB), &1AB = BCA (1 --QJA‘S) JB
GA —1 GB —1
JAx;i:—, JB'—‘-'W (1.14)
Bsra ]‘h [ Bere ]"‘

P S AL
aA‘ [ﬂAPA Y BBPB
bia=10—0cs X, g =t —24 "Ly + cs*X (1.'15)

g =1t—cg Ly —ep™t (X — Ly)

tap = t — ca” Ly — 2c57 (Lp — L4) + cp~* (X — Ly)
tsp =t — cp" 'Ly — 2¢p71 (Lp — Ly) — cp™1 (X — Ly)
tic =t —c¢ca Ly — e~ (Lp — L4) — cc™* (X — Lp)
trap = t — ca” 'Ly — 2¢p7T (Lp — L) — ca™t (Ls — X)

In the limit case of absence of medium B, when ppand g, vanish, @4 = 0 and,
consequently, J, = —1,while in the limit case of the absolutely rigid body, we have
oy —> o0 and J4 = 1. The limit values of Jp can be similarly elucidated, The
nonlinear effects in the reflections of a pulse from a free and rigid boundary were con-
sidered in [2— 7],

2, Asymptotic approximation of pulse U 4. In [8] exact formulasand
two forms of asymptotic representation for g —» (0 are derived for calculating pulse
Uaw (X, t) and its first and second derivatives in problems 1 and 2 up to the instant
of time ¢ = ¢4-1L, at which begins the reflection of that pulse from the interface
X = L, . It was shown in [3, 8] that the asymptotic expansion of the exact solution along
the characteristics of the linear wave equation are within the first and second approxi-
mations the same as those obtained earlier by the author in [2, 7] by the method of suc-
cessive integration of nonhomogeneous linear wave equations, Hence only the first ap-
proximation formulas
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t1a

Uaan (X, ) = — e14 [H (tya) — H (t;4 — to)]{ S VP (z)dz + —smx (2.1

ha

(A 4 Ty kaci! X V2 () dz + ey akacR XY (fra) + & (0)}
0

exal (tia — 1) {S (@) 2]+ 4 era (1 + Ty kaci S ¥? (2) dz + ¢ (0)}
0
are reproduced here, In these formulas and subsequently '; = 1 and I} = — 1, re-
spectively, for problems 1 and 2,

3, Asymptotic approximations of pulses U.e and Usy- Inthe
region of interaction between the incident pulse U, and the reflected pulse U4y
(see triangle 1—2—3 in Fig, 2) the sum Ugaqy -+ Ua (o) must satisfy Eq, (1. 4) with j =
A and pulse U,y has already been determined by the solution of that equation, Hence
for the derivation of U4 ) we have the equation

-2 UA(2) (X t) — Ua @ (X, 1) = lkAU;m) + la (U:“ﬂ))2 (.1)
N UA@) + [kAUA(‘z) + 21AUA(1>UA(2> + 14 (UA<2>) +
]UA(I) -+ [kAUA(l) —+ lA (UA(l)) -+ 2lAUA(1)UA(‘l) +

. UA(z)

The method of successive integration of nonhomogeneous linear wave equations re-
duces in the case of Eq, (3. 1) to the successive integration of equations

cXUnayr (X, ) —Uaer(X, ) =Gapr (X, 1), T =1,2,3,... (3.2
where , , .,
GA(.‘z)r (X, )= [kAUA(z)r—l + la (UA(Z)r—1)2 + ... UA(2)T—1 +
54U a@yr-1 + 204U aqyrU a@yr1 + la Uagyra)* 4 - -1 X
UA(1)r—1 + [kAUA(l)r—l + l.A (UA(1)r—1)2 +
2lAUA(l)r—1UA(2)r-1 + .. °],UA(2)r—1

For the successive approximation of pulse Up;, we obtain from Eq.(1.4)with j = B
the following nonhomogeneous linear wave equations:

B Upuyr (X, 1) — Upyr (X, t) = Gy (X, 1)y r=1,2,3,... (3.3
where .
Gpayr (X, t) = kU payr-1 + 8 Up@yr1)* + - - 1UBayr

The integration of Eqs, (3. 2) and (3. 3) in each approximation r = 1, 2, 3,. ..
must be carried out with the following conditions taken into account: pulse Uag) is
to propagate in the direction of decreasing X and pulse Up () in that of increasing X,
the initial conditions (1, 6) and the contact conditions (1, 9) must be satisfied.

It is advisable to carry out calculations in two stages. In the first stage the integration
of Egs. (3. 2) and (3, 3) is carried out with the contact conditions (1. 9) replaced, respect-
ively, by conditions

Uaeyr (La, 1) = eyatpya (a) H (tya) — H (tya — 10)] (3.9
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Upwyr (La, t) = — e1pWip () [H (tg) — H (tz — 1)l (3.5)

where 1,4 (2,4) and P,p (¢,5) are,so far, some unspecified functions,

At the secona stage functions W24 (!24) and y,p (1,p) are determined so that con-
ditions (1. 9) are satisfied,

This device makes it possible to consider separately in the first stage the problem of
integrating Egs, (3. 2) and (8, 3) separately, These problems were solved in [3] with the
use of Laplace transformation, For brevity we omit intermediate computations and pre-

sent their solutions in the first approximation as follows: toa

Uaon (X, t) = epa [H (tya) — H (t4 — to)]{ & VYou (2)dz + (3.6)

0

T eaakac (La — X) 42 (ta) — 5 e1abaciH (4) X
ag ha
[0 §{ 9@ s —9n) { 0 da|+ L ertbacdHtua—to)x
?;A otlA
[on) { v@ds—vtn § @ az]+ 20} +
] te

te

eaaH (tas — to){§ ¥oa (2) dz + &2 (0))

0

L1B
Upan (X, t) = — e, [H (t;8) — H (t18 — to)] { S Pp()dz+ B-D
1]
% e1nkncy (X — La) V15 (tip) + &2 (O)} —e&;pH (4,5 — to) X
ty

{

We pass to the execution of the second stage, Noting that for X = L4 we have
Ua (La, t) = Usaw (Last) + Uae (La, 1)
Us (L4, t) = Uy (La, ?)

and using formulas (2, 1), (3, 6) and (3. 7), we can obtain from contact condition (1, 9)
the following expressions for functions P,4 and ;g:

VY5 (2)dz + s“(O)}

S

Poa (t2a) = P (taa) + ’zt" eka {% U+ T+ T2 —J 4 + Ja) KAl X (3.8)
34

¥ (ba) — (A =T ¥ (a) | $(@)dz + 2 La 24 ()

Yun (tp) = B () + ka1 +Ti— (A + TP KAl ¥ (e} + (39

o~

1B

L ekt (1s) | $(@)dz + 5 ekackLagr ¥ (o)
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Here and in what follows we use the definition

kpba
Ka= KBy t (3. 10)

The substitution of (3, 8) into (3. 6) and of (3. 9) into (3. 7) yields the final formulas
for calculating the first approximations U )i and Upiyy of pulses U and Upgy.
The differentiation of these equations readily yields formulas for first approximations of
derivatives U 4¢y1 and Upqyi- The formulas for computing U:m)l and Upgqy, are

Uaen (X, 2) = H (t,4) — H (tha — to)] Va0 (X, 1) + (3.11)
Vaw: (X, 01+ [H (tp4) — H (tya — o)) [H (t14) — H (tra—
tolV aqap (X,2)

Usay (X, t)y=1H (t18) — H (t18 — ty)] [V}im o (X, 8) + Vwa (X,0] (3.12)
where .

Vamo (X, 1) = cae Ja ¥ (fha) (3.13)
Viaen (X, ) = cacha {5 (A =T+ TP Ka + T4+ )] X

1o fag

V? (toa) + o JA"-P (t24) [S Y(z)ds — (1 — Ja) g P(z) dz,] +

g

T A (La — X)+ Talal 5 ¥ (o)

tag
Vi (X, ) = casthal s {— 4 ¥ (ha) | 9212+
HA ’
v ) | v ds)
ty
Vaayp (X, t) = — cae (1 — J4) ¥ (118) (3.14)
Vaun (X, 8) = — castha {5 14+ T — (1 + T2 KaP ¥ (o) +

¥F:]

T4 ) | b@dz+

0

L (RLa + (1 + ) (Ka + D8 (X — Lol 5 ¥ ()}

Note that in formula (3. 11) function V. Ao defines the zero (linear) approximation
of Ul , function V. A@)1 defines the nonlinear component of U, A) outside the re-
gion of interaction between pulses Uaq and Uae ,and function v AQuay determines
the nonlinear component of U, Acz) which is nonzero only in the region of interaction
between pulses Uaqy and Uaqy) (see Fig, 2) and together with function VA(3)1 deter~
mines the nonlinear distortion of U, A(g) in that region,

Similarly, in formula (3. 12) function V; Bo determines the zero (linear) approxima-
tion of Upqy, and function Vp(y1 determines the nonlinear component of Ug ).

We point out that the presented first approximation of the considered pulses is based
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on the calculation of functions G, and Gpy1 by the zero approximation (1, 11) of
these pulses, To determine second appioximations of pulses U a() and [/ By itis ne-
cessary to calculate functions Gag, and gy, by the first approximation of these
pulses, as shown in this Section,

4. Asymptotic approximation of pulses Upy, and Uggy,y. Fimst ap-
proximation formulas for pulses Upgy and U c(yy and their derivatives can be readily
derived by a procedure analogous to that described in Sect, 3, Omitting cumbersome in-
termediate operations, we present the final formulas for calculating the first approxima-
tion Upgy1 of the quantity U/, B@

Usan (X, ) = H (t8) — H (tsp — t) Vo (X, ) + (4D
Vae: (X, 91 + [H (tag) — H (tsn — )] [H (t:5) —
H (g — t)l Veagy 1 (X, t)
Vaao (X, 8) = cae (1 — J4) To¥ (t2n) (4.2)
,* 1
Vian (X, 1) = casha (0 = JaWa {5 (1 + 11— (L + Ta Ka +

Je (1 —Je)(1 4 ) (4 +-7A)(KA + 1) K] ¥* (he) +
TA—T)Ea+ 1)y (tw>§ P(2)dz +;

where

£
TUA— =T+ T Ka+ D1V () | 92z +

FLERLs + A+ T (Ka+1) ca“(LB — Lo+
Jp(1 4+ Ja)(Ka +1)c5 (Ls — X)] =V (tzB)}
Vaan (X, ) = cag®ha (1 — Ja)Y4 + Ja) T (Ka+ 1){-' %\P'(tw)x

tap 1B

V v@dz+ L ¥ () | w200
] [

where, similarly to (3. 10), kB
Kp = _ZTB‘ —1 (4,3)

In formula (4, 1) Va(s)o defines the zero (linear) approximation of U; Be» VBen
defines the nonlinear distortion of U B(2) outside the region of interaction between the
incident pulse {Jp(;) and the reflected pulse Vp(2),and VB(12)1 determine that part of
the nonlinear distortion of Uz, which is nonzero only in the region of interaction of
pulses Upy and Ugg).

5. Asymptotic approximation of pulses Upi and U.asq- Formulas
for the first asymptotic approximations for pulses Upg) and U 4p(y) (see Fig. 2) canbe
derived by a procedure analogous to that described in Sect, 3, For - brevity we presenthere
only the final formula for determining the first approximation U, Ay ©of the quantity

UaBa
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Uasan (X, t) = [H (tias) — H (tiap — to)] X (5. 1)
[Vanao (X, ) + Vasar (X, o)l
Vapayp (X, 8) = caedp (1 — J4%) $ (t1a8)

Vasan (X, )= caskaln (8 — J2) {5 [ +To— (1 -+ TaP Ka +
Je(1—JTe) (A + TP (A +Ja)(Ka+ 1) Kp+ T (1 +-Ja) X

to
(1 — J4)?K al9?(t1a8) + é (A+Ja)Ka+1) W'(txAB)S VY (z)dz 4
0
%[JA —~ (A =T+ Ja K4 +1)—Jp (1 + Ja) 4 (Ka+1IX
}1AB

¥ (tan) | $@dz+ 3 1RLa+ A+ T+ T K +HDX

4]

& (Ls — La) +J5 (1 — J%) ¢ (La — D) 579 (s5)}

6. Information obtainable from the nonlinear distostion of re=
flected pulses entering medium 4. We consider an idealized experimental
situation on the following assumptions, First, the mathematical model defined in Sect, 1
is considered adequate. Second, that by a suitable selection of function ¥ (£} which de~
fines the time dependence of interaction at the boundary X = it is possible to de-
compose reflected pulses in medium A in linear and nonlinear components that vary dif-
ferently in time, and to determine the amplitudes of these components,

We shall show what information about the properties of media A, B and C can be
obtained on the above assumptions from the nonlinear distortion of reflected pulses which
reach medium A after passing through the interfaces of media A and B ,and B and (.

Let us assume that at point X = 2 with g = counst of medium A outside the re-
gions of interaction between pulse U/ 4(5) and pulses [J Atw) and U gp(y) (see Fig, 2) func-
tions Uy (a, 1) = &, (£) and Uagqy (a, t) = &, (t), are registered and decomposed,
On the basis of (3, 11),(3. 13) and (5. 1) we have for these functions the following first
approximation asymptotic representation:

4
gﬁ’,‘(t) :[H(i — r,~) — H(t — fo~— T‘j)] {Rjolp (t — rj) -+ 7§1 RjnF(t——-rj)} (6.1)

VB = oa (2La — a)

Ry = cpeda, Ry = Yscar®ha Wa(t + T + (1 — Ja) (1 4 (6.2
JA)zKA], Rlz == 1/4CA82]€AJAM

Ry = — Yacae®hada (1 — Ja)

RM == 1/482’6AJA{JA (LA -— a) -+ LA]

rg = T + 20}3—1 (LB — LA)

Ry = cae (1 — Ja®)JB N (6.3)

=1 a1 — TN (1 +T) —Js A)PKa

321(1 -—-/é.]fcg)e(ikA—‘r( JB)2(1A~i)= JA)((KA + D)Kp + Jp2 (1 + Ja)(1 —

J4)?K Al
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Ryy = scae®kap (1 — Ja®)(1 + Ja)(Ka + )M

Rza = 1/chezkAJB (1 - JAZ)[JA — (1 — JB)(1 -+ JA)(KA +
1) — Jp (4 + Ja)Ta (Ka + 1)]

RZ4 = 1/4041132]"'&,3 (1 - JA )[CA—ILA + Jg (1 — JAZ)CA—I (LA _
a) + (1 + Jp)(1 + Ja)(Ka + 1)eg™ (Lp — La))

Fi()) =92 (t), F(t) =9 (¥ (6.4)

Fat) =¥ O\ 6 @ds, Fo) =29 ()
t 0

= {¥@dz (6.5)

Note that functions (6.4) and the integral (6. 5) are determined by specifying function
VP (¢), i.e. by time dependence of the interaction,

In conformity with the assumptions formulated at the beginning of this Sectionwe con-
sider rjand R;; (i = 1, 2; j = 0,1, 2, 3, 4) to be constants obtained by processing
experimental data,

Formulas (6, 2) show that the six constants ryand R,; (j = 0, 1, 2, 3, 4) which are
coefficients of the first approximation of function &, (¢) are expressed in terms of five
parameters c4, L4, J4, K4 and k4of the layered medium, The resulting from this
" overdetermination" of the inverse problem of calculating ca, L4, J4, K4 and k4 by
rpand R,; (j = 0,1, 2, 3, 4, 5) vanishes only in the particular case when function
P (t) is specitied so that the integral (6.5) vanishes and, consequently, R,, = (. How-
ever, owing to the smallness of constant R,, , it is not expedient to use it for determin=~
ing the layered medium parameters,

It follows from formulas (6. 3) that the six constants r, and Ry; (j = 0, 1, 2, 3,4,5)
which are the coefficients of the first approximation of function &, (t) are expressed
in terms of the following nine parameters of the layered medium: ca, La, Ja, Ka,
ICA, cB, LB, JB and KB-

Let the amplitude € and the time dependence (t) of interaction be known, Then, with
allowance for formulas (1, 3), (1. 14), (3. 10) and (4. 3), we come to the conclusion that
the time of arrival (r;, ry)at point X = a of pulses U, A@ and Uapq) and amplitude
(Ry9, Rgp)and of their linear components makes it possible to determine the numerical
values of the four quantities

Bpop | Bapa, (La — a)(pa/ Pa)

Bcoc / Bees, (Ls — La)ps / Bo)"
and, if the amplitudes R;; (i = 1, 2;j = 1, 2, 3, 4) of the first approximations of the
nonlinear components ot these pulses are used, it is possible to determine the following
nine parameters of the layered medium:
Bsop / Bapa, Pa/pa, La, ka, kpPa/ kaPs
Bcoc / Peos, B/ ps, La, kcPs/ ksfc

It should be particularly stressed that the nonlinear theory makes it possible to calcu-
late separately the thickness of the propagation velocity of waves,
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Some of the results presented here were earlier given by the author in [3, 9, 10]. The

problem of nonlinear distortion of pulses in a layered medium were investigated in [11,
12] from a different point of view.

9.

10,

1L,

12,
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