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Nonlinear effects in the propagation, reflection, and refraction of one-dimen- 
sional pulses in a medium consisting of two layers lying on a half-space are con- 
sidered and analyzed. Properties of layers and of the half-space are different, 
and stresses are defined by an expansion in powers of strains. The initial pulse 

of finite duration is specified in the form of boundary condition at the surface 
of the external layer either for the deformation or for the dislocation rate, and 
the problem of wave pattern when the initial pulse amplitude tends to zero, i.e. 
in the case of small nonlinear effects, is solved. 

Problem is solved by the method of successive integration of nonhomogene- 
ous linear wave equations, in which the solution of the linear problem is taken 
as the first approximation and the subsequent approximations are derived by ap- 

proximating the nonlinear terms with the use of the preceding approximation. 

The derived first approximation formulas make possible to solve the inverse problem 
of acoustic determination of the properties of a medium by the parameters of reflected 
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pulses. It follows from these that the measurement of parameters, which define the re- 
flected pulses reaching the first layer within the accuracy of basic components of the 

nonlinear distortion, widens the information 
__- .-. :.:; ‘. on the properties of layers in comparison 

with the disregard of nonlinear effects (al- 

though the number of constants that deter 
mine the properties of medium is increased). 

1. Statement of the problem, 
Let us consider one-dimensional wave pro- 
cesses that depend on time t and the La- 

Fig. 1 
grangian coordinate X with the dot and the 
prime denoting derivatives with respect to 

t,and X, respectively. Let the finite inter- 

vals o,<x,<LA, LA < X< LB and the semiinfinite interval X > LB be filled 
by different media A, B and c , respectively (see Fig. 1). Longitudinal dislocationsin 

these intervals are denoted by VA (X, t), UB (X, t) and TJ~ (X, t), longitudinal 

stresses by oilA (X, t), qlB (X, t) and (J ric (X, t), and densities in the initial state 

by PA, PB and PC s respectively. Wave processes in the A, B and. C media are, re- 

spectively, defined by the following equations : 

[o,,, (X, t)l’ = PjuJ” (X, t), j = A, B, C 

a&X, t) = Qj (&'>, i = -4. B, C 
Qj (U,‘) = PO + fJ1 Iv,’ + ‘1% ki (Uj’)2 + l/s 1, (Uj’)’ + 

where Pm Pj, pit kj and Zj are constant coefficients. 
We introduce the definitions 

flj ‘I* 
cj= - [ 1 pi 

7 j=A, B, C 

From (1.1) with the use of (1.2) and (1.3) we obtain equations 

cj -2Ui” (x, t) - qj (U,‘) uj” (x, t) = 0, /‘= A, B, C 

qi (Uj’) = 1 + k,Uj’ + 1, (Uj’)” + . * * 

and stipulate the following conditions. 

1) Initial zero conditions 

(1.4) 

(1.5) 

Uj(x,o)=o,, U,‘(x,o)=o, j=A,B,C (1.6) 

(1.1) 

(1.2) 
.I 

(1.3) 

2) One of the following two boundary conditions are specified along boundary 
x =o: 

uA’ (0, t) = eI$ (r) [H (r) - H (t - &)I (problem 1) (1.7) 

VA* (0, t) = - EI# (t) [H (t) - H (t - to)1 CA (problem 2) (1.3) 

where H (t) is the Heaviside function, and t, and e are constants that satisfy conditions 

0 < t, < CA-l LAa CB-’ (LB - LA); lel<l 

and 9 (t) is an arbitrary continuous function which satisfies conditions 
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y@) = *(to) = 0, S’(O) = g’(b) = 0 

max IzC, (t) ( = 1, 0 < t < t, 

and has in the interval 0 < t < t, continuous derivatives of all orders required in the 
subsequent analysis. 

3) Displacements and longitudinal stresses must be compatible at the interfaces of 

X = LA and X = LB of adjoining media, which with allowance for (I. 2) yields the 
contact conditions 

VA (LA, t) = UB (LA, t) 
(1.9) 

PA {UA' (LA, t) + l/2 kA [UA' (LA2 t)l" + * * . ) = 

BB (UB' (LA, t> + '/2 kB [UB' (LA, t)]" + - * *> 

UB ('h, t) = UC (LB, t, 
(1.10) 

BB {UB’ (LB, t) + '/2 kB [UB'(&?, t>l" + . . -} = 

PC {UC' (LB, t) + '/2 kc [UC' (LB, t)12 + . . . } 

4) For problems 1 and 2 in which the (wave) processes are defined by (1.7) and(l.8), 
respectively, it is necessary to derive a solution that is asymptotic when e --t 0 and de- 
termines the small deviation of the nonlinear solution from the linear one which is ob- 
tained by expanding functions Qj (VI') (j = A, B and C) to within quadratic terms. 

The sought solutions of Eqs. (1.4) which must satisfy the above conditions, represent the 

18 --/ 

Fig. 2 

totality of pulses (see Fig. 2). The UA(~) 
is generated by the process at the edge 

X = 0, pulses UA(~) and UB(1) arise 

as the result of reflection-refraction 
C/A(I) at the interface X = LA of 

media A and B, pulses UB(~J and 
UC(I) are the result of reflection-re- 
fraction UBtl) at the interface X = 
LB of media B and C and so on. 

We restrict the analysis to the pulses 

shown in Fig. 2. 

We derive the solutions of problems 
1 and 2 by the method of successive in- 
tegration of linear nonhomogeneous 

wave equations [l- 31. The essence 
of that method consists of constructing 
Zero approximations uA(r)s, uA(2)09 

UB(l)O,- ' * of the considered pulses 
as solutions of the related linear prob- 
lem. The subsequent approximations 

u UA(%)j, A(l)jy 
. .) f th”ZL $sZ 5 :e- 2, 3,. 0 e 

rived by approximating the nonlinear 
terms in Eqs. (1.4) , and also in the second contact conditions (1.9) and (1. lo), using 
previous approximations. The calculations for the first approximation are presented 
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below. To derive the latter it is necessary to determine the zero approximation, which 
is the same for both problems. Elementary reasoning will show that it can be represen- 
ted in the form ‘ij 

uj(i)O (X9 t) = (-l)i eij [H(tij) ? H(t*j - tO)] 1 $((z)dz + (I' 11) 

(-l)*EijH(tij- t*)f *((z)dZ; 

0 

j = A, B, C; i = 1, 2, 3 
0 

U.J3 

UABWO (X, t) = elAB [H (~IAB) - R (&AB - to)] !J 9 (z) dz -j- (1.12) 

0 

elAi3.H (~IAB - to1 i 9(z)cEz 
0 

In these formulas which relate to pulses shown in Fig. 2, the fo~ow~g notationisu~d: 

%A = ecA, es4 = eCAJA, i?rB = @A (1 - JA) (1,131 

e2B = &CA (1 - JA) JB, 83~ = - MA (1 - JA) JA JB 

ElC = ecA (1 - JA) (1 - Jd, %AB = eCA (1 -,_A’) JB 

JA 

Cl,-1 ag --i 

=zpP 
JB = - 

ag + 1 (1,141 

tlA = t - CA-lx, t2A = t - 2c,-r LA + CA-lx (L‘15) 

tlB = t - CA -’ LA - CB-’ (x - A!.&) 

t# = t - CA --‘LA - 2@3-* (LB - LA) + CB-’ (x - LA) 

t2B = t - CA -%A - 2c,-r (LB - LA) - CB-’ (X - LA) 

t,c = t - cA-ILA - CB-’ (LB - LA) - CC-’ (X - LB) 

QAB I- t - cA-~LA - 2&--I (LB - LA) - CA-’ (LA - X) 

In the limit case of absence of medium B, when pB and fin vanish, c.6~ = 0 and, 
consequently, JA = -1, while in the limit case of the absorutely rigid body, we have 
aA+00 and JA= 1. The limit values of Jg can be similarly elucidated. The 
nonlinear effects in the reflections of a pulse from a free and rigid boundary were con- 
sidered in [2 - 71. 

2, A8ymptotfc approximation of pulre UJ(Q. In [8]exact formulasand 
two forms of asymptotic representation for a -+ 0 are derived for calculating pulse 
VA(~) (X, t> and its first and second derivatives in problems X. and 2 up to the instant 
oftime t = cA-‘LA at which begins the reflection of that pulse from the interface 
X = LA . Xt was shown in (3, 81 that the asymptotic expansion of the exact solution along 

the characteristics of the linear wave equation are within the first and second approxi- 
mations the same as those obtained earlier by the author in [Z, 71 by the method of suc- 
cessive integration of nonhomogeneous linear wave equations. Hence only the first ap- 
proximation formulas 
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%A 

‘%I)I (x7 t) = - %A [H(tlA)- H(tlA - tO)l ( 1 $(z)dz + $&,AX (2.1) 
0 

%A 

(1 + TI) b&-i1 s $2(z)dz + 
0 

$%AkAC;laX'$"(hA)+ e'(O)} - 

0 0 

are reproduced here. In these formulas and subsequently T, = 1 and T, = 
spectively, for problems 1 and 2. 

e2 (0) I 
- l,re- 

3, Asymptotic approximation8 of pulrer UA(Z) and UB(Q+ Inthe 
region of interaction between the incident pulse UAo) and the reflected pulse UA(s) 
(see triangle l-2-3 in Fig. 2) the sum UA(r) + UA t2) must satisfy Eq. (1.4) with j = 

A and pulse UA(r) has already been determined by the solution of that equation. Hence 
for the derivation of uA(s) we have the equation 

cA-s U>(2) (X, t) - &,,, (X, t) = kA&2) + IA ,t"k21)2 + (3.1) 

. . . 1 U&2, + k&w + 21Au&d,(2) + IA t”A,(2))’ + 

. . . ]U& + [kAU;(l) + ZA (&,I,)" + 2zAukuA(2) + 

. . . I U'i@) 

The method of successive integration of nonhomogeneous linear wave equations re- 
duces in the case of Eq. (3.1) to the successive integration of equations 

C;12U;(z)t (X7 0 - &(2,4x, t) = Gut (x, % = = 1, 2, 3, . . . (3.2) 
where 

GA(.s)r (X, r) = [kAU&t-i + IA (Uk,2,t42 + . . -1 U&~-I -t- 

[kA&2jr-1 + 2~A~~(1)~-1~~(2)r-1 + ZA (h(2)r-d2 + * * -1 x 

U;(1p-1 + [kAU&t-l + IA (U&)r-d2 + 
, " 

2~A~A(~)r-1~~(2)r-l + . * *1,UA(2)t-1 

For the successive approximation of pulse UBo) we obtain from Eq.( 1.4)with 1 = B 

the following nonhomogeneous linear wave equations: 

G2U&r (X, i) - U&(X, t) =- GB~~,, (X, t), r - I, 2, 3, . . . (3.3) 
where 

GB(I)+ (x, t) = tkBu ;r(l)r-1 + IB (&3~1)1.-1)~ + . . -1 Uk)M 

The integration of Eqs. (3.2) and (3.3) in each approximation r = 1, 2, 3,. . . 
must be carried out with the following conditions taken into account: pulse UAi2) is 
to propagate in the direction of decreasing ‘X and pulse UB (1) in that of increasing X, 
the initial conditions (1.6) and the contact conditions (1.9) must be satisfied. 

It is advisable to carry out calculations in two stages. In the first stage the integration 
of Eqs. (3.2) and (3.3) is carried aut with the contact conditions (1.9) replaced, respect- 
ively, by conditions 

u’ A(2)? @A, t) = e2Aq2.4 (t2A) [H (22A) - H @,A - tO)l (3.4) 
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&?(l)r (LA, t) = - elB&B (tlB) [H (t,B) - H (tlB - tO)l (3.9 

where &A (tsA) and qIB (tlB) are, so far, some unspecified fUnCtiOIIS. 

At the secona stage functions 92A (t2~) and &n (tin) are determined so that con- 

ditions (1.9) are satisfied. 

This device makes it possible to consider separately in the first stage the problem of 
integrating Eqs. (3.2) and (3.3) separately. These problems were solved in [3] with the 
use of Laplace transformation. For brevity we omit intermediate computations and pre- 

sent their solutions in the first approximation as follows: 
t2A 

‘7A(2)1 (xv t) = %A iH(t2A) - H (t2A - to)] { \ &A (2) dz + (3.6) 
0 

+ &A~AC;A~ (LA - x) 9’ (t2A) - f e,AkAC;i’H (tlA) x 

[tit& ‘~$(z)~~--d(fia) t~~(E)dZ]f$e~AkAC~H(tlA-tO)X 

01 0 

[$(tlA) ‘r$@)dz - q(t2A) ‘r*(z) a,] + e2(o)} + 

0 tr 

e2AH (t2A - tO,{i $2A(z)dz + e’(0)) 
0 

UBW (x, t) = - elB iH (tlB) - H (tlB - to)1 { t\E$~B(z)dz+ 

f alnknci2 (x - LA) $13 (tIB) + e2 (0,) - elBR (tlB - to) x 

{f %B (2) dz + e’(o)} 

(3.7) 

We pass to the execution of the second stage. Noting that for X e LA we have 

u.4 (LA, t) = UA(1) @Apt) + h(2) tLA, t, 

UB (LA, t) = ~B(I) (LAY t) 

and using formulas (2. l), (3.6) and (3,7), we can obtain from contact condition (1.9) 
the following expressions for functions $2~ and gin: 

$2A (t2A) = 9 (t2A) + $ ekA {+ 
[I + Tl+ J;lf(i - JA)(i + JA)2Kh1 x t3* 8, 

q2 @2A) - (1 - JA)$‘(t2A) t\A$(+z +Cii1LA-j+2(t2A) 

,,,lB (tlB) = ‘II, (t& + $ ekA [I “+ T, - (1 + JAja KAI $2 (tlB) + (3.9) 

%B 
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Here and in what follows we use the definition 

kBBA 
K*=-..d_ 

‘r&3 
1 (3.10) 

The substitution of (3.8) into (3.6) and of (3.9) into (3.7) yields the final formulas 
for calculating the first approximations U AW and UB(~)I of pulses Uao and UB(1). 

The differentiation of these equations readily fields formulas for first approximation of 
derivatives VA(s) 1 and UBCI) 1. The formulas for computing C&s, 1 and UBcl) 1 are 

U-ksfl ix, t, = [H (&.A) - Ii @2A - &)I [&jo (x, t) + (3.11) 

%,I (x, @I + IN (t2A) - H (Es.4 - to)] tH (tlA) - H @A- 

Wk~ltt)I (X2) 

U&m (xv t) = fw b) - H (t,B - &,)I [V&I) o (x, 1) + &q1)1 (x,t)l (3.12) 
where . 

vi, o (XT f) = CA8 JA 9 (fzz%) (3.13) 

vktz,~(x, r) = CAa’k.4 
i 

$ [(I - JA)(~ + JA)~ KA + JA (1 + TI)] x 

+ CA1 [J\ (LA - x) + JALA] g 92 @aA,} 

t2A 

v&12)1 (x, t) = CAE’kAJA \ $,(z)di$ 

0 

&ljl (x, t) = - CAEakA 
C 

$ ki + TI - (1 + JA) KAl2 II” f&B) + 

QB 

$ JA$’ &B) \ 11, (2) dz + 

f [C-ALA + (i + JA) (KA + 1) 6’ (x - LA)] -& *2 (hB)} 

(3.14) 

Note that in formula,(3.11) function &~2ja defines the zero (linear) approximation 
of U>(,, , function V~(ql defines the nonlinear component of Uic2) outside the re- 
gion of interaction between pul;ses UAQ) and UAQ~ , and function V~tIsjl determines 
the nonlinear component of UA(~) which is nonzero only in the region of inFraction 

between pulses UA(~) and UA(~) (see Fig, 2) and together with function VAT deter- 
mines the nonlinear distortion of Ui12, in that region. 

Similarly, in formula (3.12) function li&, determines the zero (linear) approxima- 
tion of U&Q, and function V&r)l determines the nonlinear component of U;(l). 

We point out that the presented first approximation of the considered pulses is based 
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on the calculation of functions GA(s)1 and GB(~)I by the zero approximation (1.11) of 
these pulses. To determine secon4approximations of pulses U&s) and UBtIj it is ne- 
cessary to calculate functions GA(~), and Gnfrja by the first approxima~on of these 
pulses, as shown in this Section. 

4. A:ymptotic approximation of pulw Z~B,%, and D*o(~~. First ap- 
proximation formulas for pulses UBGj and UC(s) and their derivatives can be readily 
derived by a procedure analogous to that described in Sect. 3. Omitting cumbersome in- 
termediate operations, we present the final formulas for calculating the first approxima- 
tion U&)I of the quantity U>(s) 

&rCzjl (x, t) = jH (tsn) - H @2B - t&l fv&2hl tx, ‘) + (4.1) 

V;c2,1 (x, t)] + fH (t,B) - H (t2B - h)l iw (kd - 

where 
liT i&-j - &Jl G?fl2) 1 (X3 t) 

V&2)0 (x, t) = CA8 (1 - JA) JBq @2B) (4.2) 

v&s,~ (x, t) = CAaskA (2 - JA)pB{$ [i + TI-- (1 + JA)~KA + 

J;;‘(i - JB) (1 + JB12 (4 + JA) (KA + If KS] ‘t” tt2B) + 

+(I -JA)@A + I)$(t,,)s’ “#@)dz +; 

0 

t2B 

$ [JA - (I - J&l + JA)(KA + 1)1 ‘i”(t2B) \ ‘# (2) &ii + 

/ 

+ [c:LA f (1 + JA) @A + 1) &LB - LA) ; 

JB (1 + JA) @A + 1) &LB - WI $ q2 (tal?)) 

v’;i(l2>1 (x, t) = Gi@kA (1 - JA@ + JA) JB (h + *){ - + ‘t&d X 

k3 tlB 

\ $(z>dz + $ $‘(~zB) \ 9o~z) 

0 to 

where, similarly to (3. lo), 
Kg_%-1 

B 
(4 3) 

fn formula (4.1) V&2to defines the zero (linear) approx~ation of U&s>, V&s), 
defines tfie nonlinear distortion of Un(s) outside the region of interaction between the 
incident pulse Us(Ij and the reflected pulse Vn(s) , and ‘v~(12jI determine that part of 

. 
the nonlinear distortion of Un(s) which is nonzero only in the region of interaction of 

pulses UB(1) and UB(~‘,* 

6. Asymptotic approxfmation of pulrer US(~) and UABW Formul= 

for the first asymptotic approximations for pulses UBCS) and UAB(I) (see Fig. 2) canbe 

derived by a procedure analogous to that described in Sect, 3. For brevity we present here 
only the final formula for determining the first approximation UAB(~)~ of the quantity 

UAB(1) 
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6. Information obtrinrblo from tho nonllnart dirtcrtion of re- 
fleeted p~l:c# entering medium A. We consider an idealized experimental 
situation on the following assumptions, First, the mathematical model defined in Sect. 1 
is considered adequate. Second, that by a suitable selection of function 9 (t) which de- 
fines the time dependence of interaction at the boundary X = 0 it is possible to de- 

compose reflected pulses in medium A in linear and nonlinear components that vary dif- 
ferently in time, and to determine the amp~tudes of these components, 

We shall show what informa~on about the properties of media A, B and C can be 
obtained on the above assumptions from the nonlinear distortion of reflected pulses which 
reach medium A after passing through the interfaces of media A and B , and B and C. 

Let us assume that at point X = r~ with a = const of medium A outside the re- 
gions of interaction between pulse us and pulses UA(~) and UAB(~) (see Fig, 2) func- 
tions U& (a, t) = 8, (t) and Uti(r) (a, t) = 8s (t), are registered and decomposed, 
On the basis of (3.11),(3.13) and (5.1) we have for these functions the following first 
approximation asymptotic representation: 

$‘j(t) = [H(t .- pi) - H (t - to- rj)] pjow (t - rj) + i Hjnfi’(t--rj)} (6.1) 
Tlz=l 

where 
r1 = CA-r (SAA - a) 

RIO = CB&.fA, RI1 = ‘f&Atf%A tJA (1 + Td i- f’ - JA) (I + (‘* 2, 

J_#K& RIZ, = ‘t&_@=khJaM 

RI, = - ‘iaC~C2k.&A (4 - JA) 

RI, = 1/4sZkAJA[JA (LA - a) + LA] 

r2 = rl + 2cB’ (LB - LA) 

Rzo = CAE (I - .~A’)JB 
(6.3) 

RsI = ‘/,CAe’kA (1 - JAa)IfB (1 + Td - JB (’ + J-daKA + 

(1 - 
JB)(l + J#o + JA)(KA + f)fi’B + JB~ (I + JA)(* - 

JAYKAI 
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Rz2 = ‘l&AE”kAJ, (1 - JA~)(I + JA)(KA + 1)M 
R23 = ‘/&AE2kAJB (1 - JA~)[JA - (1 - JB)(~ -l- JA)(KA i- 

1) - JB (1 + JA)JA (KA + !)I 
Rzd = ‘/dCAE’kAJB (1 - JA’)[cA-~LA i- JB (1 - JA’)cA-~ (LA - 

a) + (1 + JB)(~ + JA)(KA + I)cB-l (LB - LA)] 

FI (4 = 9’ (0, Fz (4 = $’ (6 (6.4) 

W)= W)B~U(WB h(t) = $q2(t) 

M= fS$(z)dz (6.5) 
0 

Xote that functions (6.4) and the integral (6.5) are determined by specifying function 
‘II, (t), i.e. by time dependence of the interaction. 

In conformity with the assumptions formulated at the beginning of this Sectionwe con- 
sider ri’and Rij (i = 1, 2; 1 = 0, 1, 2, 3, 4) to be constants obtained by processing 

experimental data. 

Formulas (6.2) show that the six constants r, and Rrj (j = 0, 1, 2, 3, 4) which are 

coefficients of the first approximation of function 8i (t) are expressed in terms of five 
parameters CA, LA, JA, KA and kAof the layered medium. The resulting from this 

“overdetermination” of the inverse problem of calculating CA, LA, JA, KA and kA by 

ri and R,j (j = 0, 1, 2,7 3, 4, 5) vanishes only in the particular case when function 

4 (t) is specified so that the integral (6.5) vanishes and, consequently, RI2 = 0. How- 
ever, owing to the smallness of constant RI2 , it is not expedient to use it for determin- 

ing the layered medium parameters, 

It follows from formulas (6.3) that the six constants ra and RBj (j = 0, 1, 2, 3,4,5) 
which are the coefficients of the first approximation of function $a (t) are expressed 

in terms of the following nine parameters of the layered medium: CA, LA, JAM KA, 

k~, CB, LB, JB and KB. 
Let the amplitude & and the time dependence $ (t) of interaction be known. Then, with 

allowance for formulas (1.3), (1.14), (3.10) and (4: Y), we come to the conclusion that 

the time of arrival (ri, r.J at point X = a of pulses U&j and L&n(r) and amplitude 
(RIO, RzO) and of their linear components makes it possible to determine the numerical 
values of the four quantities 

PBPB / PAPA, (LA - a)(PA / P-4)“’ 

BcPc 1 BBPB, (LB - LA)(PB 1 pB)l” 

and, if the amplitudes Ri j (i = 1, 2; j = 1, 2, 3, 4) of the first approximations ofthe 
nonlinear components ot these pulses are used, it is possible to determine the following 

nine parameters of the layered medium: 

BBPB I BAPA, $A 1 PA, LA, k.4, kBfiA 1 k&B 

/&PC 1 PBPB, $B 1 PB, LB, k&B 1 k&c 

It should be particularly stressed that the nonlinear theory makes it possible to calcu- 
late separately the thickness of the propagation velocity of waves. 
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Some of the results presented here were earlier given by the author in [3, 9, lo]. The 
problem of nonlinear distortion of pulses in a layered medium were investigated in [ll, 
121 from a different point of view. 
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